Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Nat Commun ; 15(1): 2742, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548752

RESUMEN

The epidermal growth factor receptor, EGFR, is frequently activated in lung cancer and glioblastoma by genomic alterations including missense mutations. The different mutation spectra in these diseases are reflected in divergent responses to EGFR inhibition: significant patient benefit in lung cancer, but limited in glioblastoma. Here, we report a comprehensive mutational analysis of EGFR function. We perform saturation mutagenesis of EGFR and assess function of ~22,500 variants in a human EGFR-dependent lung cancer cell line. This approach reveals enrichment of erlotinib-insensitive variants of known and unknown significance in the dimerization, transmembrane, and kinase domains. Multiple EGFR extracellular domain variants, not associated with approved targeted therapies, are sensitive to afatinib and dacomitinib in vitro. Two glioblastoma patients with somatic EGFR G598V dimerization domain mutations show responses to dacomitinib treatment followed by within-pathway resistance mutation in one case. In summary, this comprehensive screen expands the landscape of functional EGFR variants and suggests broader clinical investigation of EGFR inhibition for cancers harboring extracellular domain mutations.


Asunto(s)
Glioblastoma , Neoplasias Pulmonares , Humanos , Glioblastoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación
3.
Clin Cancer Res ; 30(8): 1669-1684, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38345769

RESUMEN

PURPOSE: ERBB2-amplified colorectal cancer is a distinct molecular subtype with expanding treatments. Implications of concurrent oncogenic RAS/RAF alterations are not known. EXPERIMENTAL DESIGN: Dana-Farber and Foundation Medicine Inc. Colorectal cancer cohorts with genomic profiling were used to identify ERBB2-amplified cases [Dana-Farber, n = 47/2,729 (1.7%); FMI, n = 1857/49,839 (3.7%)]. Outcomes of patients receiving HER2-directed therapies are reported (Dana-Farber, n = 9; Flatiron Health-Foundation Medicine clinicogenomic database, FH-FMI CGDB, n = 38). Multisite HER2 IHC and genomic profiling were performed to understand HER2 intratumoral and interlesional heterogeneity. The impact of concurrent RAS comutations on the effectiveness of HER2-directed therapies were studied in isogenic colorectal cancer cell lines and xenografts. RESULTS: ERBB2 amplifications are enriched in left-sided colorectal cancer. Twenty percent of ERBB2-amplified colorectal cancers have co-occurring oncogenic RAS/RAF alterations. While RAS/RAF WT colorectal cancers typically have clonal ERBB2 amplification, colorectal cancers with co-occurring RAS/RAF alterations have lower level ERRB2 amplification, higher intratumoral heterogeneity, and interlesional ERBB2 discordance. These distinct genomic patterns lead to differential responsiveness and patterns of resistance to HER2-directed therapy. ERBB2-amplified colorectal cancer with RAS/RAF alterations are resistant to trastuzumab-based combinations, such as trastuzumab/tucatinib, but retain sensitivity to trastuzumab deruxtecan in in vitro and murine models. Trastuzumab deruxtecan shows clinical efficacy in cases with high-level ERBB2-amplified RAS/RAF coaltered colorectal cancer. CONCLUSIONS: Co-occurring RAS/RAF alterations define a unique subtype of ERBB2-amplified colorectal cancer that has increased intratumoral heterogeneity, interlesional discordance, and resistance to trastuzumab-based combinations. Further examination of trastuzumab deruxtecan in this previously understudied cohort of ERBB2-amplified colorectal cancer is warranted.


Asunto(s)
Neoplasias Colorrectales , Variaciones en el Número de Copia de ADN , Humanos , Animales , Ratones , Amplificación de Genes , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Resultado del Tratamiento , Mutación
4.
J Clin Oncol ; 42(11): 1311-1321, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38207230

RESUMEN

PURPOSE: Although immune checkpoint inhibitors (ICI) have extended survival in patients with non-small-cell lung cancer (NSCLC), acquired resistance (AR) to ICI frequently develops after an initial benefit. However, the mechanisms of AR to ICI in NSCLC are largely unknown. METHODS: Comprehensive tumor genomic profiling, machine learning-based assessment of tumor-infiltrating lymphocytes, multiplexed immunofluorescence, and/or HLA-I immunohistochemistry (IHC) were performed on matched pre- and post-ICI tumor biopsies from patients with NSCLC treated with ICI at the Dana-Farber Cancer Institute who developed AR to ICI. Two additional cohorts of patients with intervening chemotherapy or targeted therapies between biopsies were included as controls. RESULTS: We performed comprehensive genomic profiling and immunophenotypic characterization on samples from 82 patients with NSCLC and matched pre- and post-ICI biopsies and compared findings with a control cohort of patients with non-ICI intervening therapies between biopsies (chemotherapy, N = 32; targeted therapies, N = 89; both, N = 17). Putative resistance mutations were identified in 27.8% of immunotherapy-treated cases and included acquired loss-of-function mutations in STK11, B2M, APC, MTOR, KEAP1, and JAK1/2; these acquired alterations were not observed in the control groups. Immunophenotyping of matched pre- and post-ICI samples demonstrated significant decreases in intratumoral lymphocytes, CD3e+ and CD8a+ T cells, and PD-L1-PD1 engagement, as well as increased distance between tumor cells and CD8+PD-1+ T cells. There was a significant decrease in HLA class I expression in the immunotherapy cohort at the time of AR compared with the chemotherapy (P = .005) and the targeted therapy (P = .01) cohorts. CONCLUSION: These findings highlight the genomic and immunophenotypic heterogeneity of ICI resistance in NSCLC, which will need to be considered when developing novel therapeutic strategies aimed at overcoming resistance.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antineoplásicos Inmunológicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Genómica , Inmunofenotipificación , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/uso terapéutico
5.
Histopathology ; 84(2): 369-380, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37920148

RESUMEN

AIMS: The invasive pattern in HPV-associated endocervical adenocarcinoma (HPVA) has prognostic value. Non-destructive (pattern A) HPVA has excellent prognosis mirroring adenocarcinoma in-situ (AIS). However, the rare occurrence of ovarian spread in these tumours suggests aggressiveness in a subset of patients with these otherwise indolent lesions. We hypothesise that AIS/pattern A HPVA with ovarian metastases are biologically different than metastatic destructively invasive HPVA. METHODS AND RESULTS: Samples from patients with HPVA and synchronous or metachronous metastases were retrieved and reviewed to confirm diagnosis and determine the Silva pattern in the primary lesion. For each case, normal tissue, cervical tumour and at least one metastasis underwent comprehensive sequencing using a 447-gene panel. Pathogenic single-nucleotide variants and segmental copy-number alterations (CNA), tumour mutational burden and molecular signatures were evaluated and compared between primary and metastases and among invasive pattern categories. We identified 13 patients: four had AIS/pattern A primaries, while nine had pattern B/C tumours. All AIS/pattern A lesions had metastasis only to ovary; 50% of patients with ovarian involvement, regardless of invasive pattern, also had involvement of the endometrium and/or fallopian tube mucosa by HPVA. In the ovary, AIS/pattern A HPVA showed deceptive well-differentiated glands, often with adenofibroma-like appearance. Conversely, pattern C HPVAs consistently showed overt infiltrative features in the ovary. Sequencing confirmed the genetic relationship between primary and metastatic tumours in each case. PIK3CA alterations were identified in three of four AIS/pattern A HPVAs and three of eight pattern B/C tumours with sequenced metastases. Pattern C tumours showed a notably higher number of CNA in primary tumours compared to pattern A/B tumours. Only one metastatic AIS/pattern A HPVA had a novel pathogenic variant compared to the primary. Conversely, five of eight pattern B/C tumours with sequenced metastases developed novel pathogenic variants in the metastasis not seen in the primary. All four AIS/pattern A patients were alive and free of disease at 31, 47, 58 and 212 months after initial diagnosis. Conversely, cancer-related death was documented in five of nine pattern B/C patients with follow-up at 7, 20, 20, 43 and 87 months. CONCLUSION: Morphologically and genomically, AIS/pattern A HPVA with secondary ovarian involvement appears distinct from destructively invasive tumours. In at least a subset of these cases, ovarian spread appears to occur via trans-Mullerian superficial extension, different from the stromal and lymphatic vascular spread typical of more aggressive tumours (pattern C). These differences may explain the indolent outcome observed in the rare subset of patients with AIS/pattern A HPVA and ovarian metastasis. Our data underscore the potential for conservative surgical management approaches to pattern A HPVA.


Asunto(s)
Adenocarcinoma in Situ , Adenocarcinoma , Neoplasias Ováricas , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/diagnóstico , Infecciones por Papillomavirus/complicaciones , Adenocarcinoma/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/secundario
6.
JCO Precis Oncol ; 7: e2300295, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37972337

RESUMEN

PURPOSE: RET rearrangements and RET activating point mutations represent targetable genomic alterations in advanced solid tumors. However, the frequency and clinicopathologic characteristics of wild-type RET amplification in cancer and its potential role as a targetable oncogenic driver are not well-characterized. METHODS: In two institutional cohorts of patients with solid cancers from the Dana-Farber Cancer Institute (DFCI) and Memorial Sloan Kettering Cancer Center (MSKCC) whose tumors underwent next-generation sequencing (NGS), the frequency and clinicopathologic features of wild-type RET amplification in the absence of RET rearrangements or activating mutations was assessed. The findings were validated using merged data from The Cancer Genome Atlas (TCGA), Genomics Evidence Neoplasia Information Exchange (GENIE), and China Pan-Cancer data sets. RESULTS: The frequency of wild-type RET amplification across all solid cancers was 0.08% (26 of 32,505) in the DFCI cohort, 0.05% (26 of 53,152) in the MSKCC cohort, and 0.25% (71 of 28,623) in the cohort from TCGA, GENIE, and China Pan-Cancer. Cancer types with RET amplification included non-small-cell lung cancer (NSCLC), hepatobiliary cancer, prostate cancer, breast cancer, and others. The median RET copy number in RET-amplified cases was 7.5 (range, 6-36) in the DFCI cohort and 5.7 (range, 4-27.7) in the MSKCC cohort. Among 11 RET-amplified NSCLCs, eight had no other concurrent driver mutations. Finally, we report on a 69-year-old man with recurrent NSCLC harboring high-level wild-type RET amplification (22-28 copies) as the only identified putative genomic driver who experienced both a systemic and intracranial confirmed response to the RET inhibitor selpercatinib. CONCLUSION: Amplification of wild-type RET represents a novel, targetable molecular subset of cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Anciano , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Mutación , Recurrencia Local de Neoplasia , Proteínas Proto-Oncogénicas c-ret/genética
7.
Pediatr Blood Cancer ; 70(11): e30643, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37596911

RESUMEN

Utilization of tumor-only sequencing has expanded in pediatric cancer patients, which can lead to identification of pathogenic variants in genes that may be germline and/or have uncertain relevance to the tumor in question, such as the homologous recombination (HR) pathway genes BRCA1/2. We identified patients with pathogenic BRCA1/2 mutations from somatic tumor sequencing, and performed additional germline sequencing to assess for the presence of loss of heterozygosity (LOH). Of seven patients identified, four (57.1%) mutations were found in the germline and none had associated LOH. Our data suggest that BRCA1/2 mutations identified in this context are likely incidental findings.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Neoplasias Ováricas , Femenino , Humanos , Niño , Proteína BRCA1/genética , Neoplasias Ováricas/patología , Mutación de Línea Germinal , Proteína BRCA2/genética , Pérdida de Heterocigocidad
8.
Clin Cancer Res ; 29(22): 4627-4643, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37463056

RESUMEN

PURPOSE: Approximately 8% to 10% of pancreatic ductal adenocarcinomas (PDAC) do not harbor mutations in KRAS. Understanding the unique molecular and clinical features of this subset of pancreatic cancer is important to guide patient stratification for clinical trials of molecularly targeted agents. EXPERIMENTAL DESIGN: We analyzed a single-institution cohort of 795 exocrine pancreatic cancer cases (including 785 PDAC cases) with a targeted multigene sequencing panel and identified 73 patients (9.2%) with KRAS wild-type (WT) pancreatic cancer. RESULTS: Overall, 43.8% (32/73) of KRAS WT cases had evidence of an alternative driver of the MAPK pathway, including BRAF mutations and in-frame deletions and receptor tyrosine kinase fusions. Conversely, 56.2% of cases did not harbor a clear MAPK driver alteration, but 29.3% of these MAPK-negative KRAS WT cases (12/41) demonstrated activating alterations in other oncogenic drivers, such as GNAS, MYC, PIK3CA, and CTNNB1. We demonstrate potent efficacy of pan-RAF and MEK inhibition in patient-derived organoid models carrying BRAF in-frame deletions. Moreover, we demonstrate durable clinical benefit of targeted therapy in a patient harboring a KRAS WT tumor with a ROS1 fusion. Clinically, patients with KRAS WT tumors were significantly younger in age of onset (median age: 62.6 vs. 65.7 years; P = 0.037). SMAD4 mutations were associated with a particularly poor prognosis in KRAS WT cases. CONCLUSIONS: This study defines the genomic underpinnings of KRAS WT pancreatic cancer and highlights potential therapeutic avenues for future investigation in molecularly directed clinical trials. See related commentary by Kato et al., p. 4527.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Persona de Mediana Edad , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Mutación , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética
9.
J Thorac Oncol ; 18(11): 1524-1537, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37247843

RESUMEN

INTRODUCTION: Although gene-level copy number alterations have been studied as a potential biomarker of immunotherapy efficacy in NSCLC, the impact of aneuploidy burden and chromosomal arm-level events on immune checkpoint inhibitor (ICI) efficacy in NSCLC is uncertain. METHODS: Patients who received programmed cell death protein 1 or programmed death-ligand 1 (PD-L1) inhibitor at two academic centers were included. Across all 22 chromosomes analyzed, an arm was considered altered if at least 70% of its territory was either gained or deleted. Among nonsquamous NSCLCs which underwent targeted next-generation sequencing, we retrospectively quantified aneuploidy using the adjusted fraction of chromosomal arm alterations (FAA), defined as the number of altered chromosome arms divided by the number of chromosome arms assessed, adjusted for tumor purity. RESULTS: Among 2293 nonsquamous NSCLCs identified, the median FAA increased with more advanced cancer stage and decreased with higher PD-L1 tumor proportion score (TPS) levels (median FAA in TPS < 1%: 0.09, TPS 1%-49%: 0.08, TPS ≥ 50%: 0.05, p < 0.0001). There was a very weak correlation between FAA and tumor mutational burden when taken as continuous variables (R: 0.07, p = 0.0005). A total of 765 advanced nonsquamous NSCLCs with available FAA values were treated with ICIs. With decreasing FAA tertiles, there was a progressive improvement in objective response rate (ORR 15.1% in upper tertile versus 23.2% in middle tertile versus 28.4% in lowest tertile, p = 0.001), median progression-free survival (mPFS 2.5 versus 3.3 versus 4.1 mo, p < 0.0001), and median overall survival (mOS 12.5 versus 13.9 versus 16.4 mo, p = 0.006), respectively. In the arm-level enrichment analysis, chromosome 9p loss (OR = 0.22, Q = 0.0002) and chromosome 1q gain (OR = 0.43, Q = 0.002) were significantly enriched in ICI nonresponders after false discovery rate adjustment. Compared with NSCLCs without chromosome 9p loss (n = 452), those with 9p loss (n = 154) had a lower ORR (28.1% versus 7.8%, p < 0.0001), a shorter mPFS (4.1 versus 2.3 mo, p < 0.0001), and a shorter mOS (18.0 versus 9.6 mo, p < 0.0001) to immunotherapy. In addition, among NSCLCs with high PD-L1 expression (TPS ≥ 50%), chromosome 9p loss was associated with lower ORR (43% versus 6%, p < 0.0001), shorter mPFS (6.4 versus 2.6 mo, p = 0.0006), and shorter mOS (30.2 versus 14.3 mo, p = 0.0008) to immunotherapy compared with NSCLCs without 9p loss. In multivariable analysis, adjusting for key variables including FAA, chromosome 9p loss, but not 1q gain, retained a significant impact on ORR (hazard ratio [HR] = 0.25, p < 0.001), mPFS (HR = 1.49, p = 0.001), and mOS (HR = 1.47, p = 0.003). Multiplexed immunofluorescence and computational deconvolution of RNA sequencing data revealed that tumors with either high FAA levels or chromosome 9p loss had significantly fewer tumor-associated cytotoxic immune cells. CONCLUSIONS: Nonsquamous NSCLCs with high aneuploidy and chromosome 9p loss have a distinct tumor immune microenvironment and less favorable outcomes to ICIs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antígeno B7-H1 , Estudios Retrospectivos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Aneuploidia , Aberraciones Cromosómicas , Cromosomas/metabolismo , Microambiente Tumoral
10.
JCO Precis Oncol ; 7: e2200334, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36996377

RESUMEN

PURPOSE: Osteosarcoma risk stratification, on the basis of the presence of metastatic disease at diagnosis and histologic response to chemotherapy, has remained unchanged for four decades, does not include genomic features, and has not facilitated treatment advances. We report on the genomic features of advanced osteosarcoma and provide evidence that genomic alterations can be used for risk stratification. MATERIALS AND METHODS: In a primary analytic patient cohort, 113 tumor and 69 normal samples from 92 patients with high-grade osteosarcoma were sequenced with OncoPanel, a targeted next-generation sequencing assay. In this primary cohort, we assessed the genomic landscape of advanced disease and evaluated the correlation between recurrent genomic events and outcome. We assessed whether prognostic associations identified in the primary cohort were maintained in a validation cohort of 86 patients with localized osteosarcoma tested with MSK-IMPACT. RESULTS: In the primary cohort, 3-year overall survival (OS) was 65%. Metastatic disease, present in 33% of patients at diagnosis, was associated with poor OS (P = .04). The most frequently altered genes in the primary cohort were TP53, RB1, MYC, CCNE1, CCND3, CDKN2A/B, and ATRX. Mutational signature 3 was present in 28% of samples. MYC amplification was associated with a worse 3-year OS in both the primary cohort (P = .015) and the validation cohort (P = .012). CONCLUSION: The most frequently occurring genomic events in advanced osteosarcoma were similar to those described in prior reports. MYC amplification, detected with clinical targeted next-generation sequencing panel tests, is associated with poorer outcomes in two independent cohorts.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Osteosarcoma/diagnóstico , Osteosarcoma/genética , Osteosarcoma/patología , Pronóstico , Amplificación de Genes
11.
JCO Precis Oncol ; 6: e2200390, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36446043

RESUMEN

PURPOSE: Multiple FGFR inhibitors are currently in clinical trials enrolling adults with different solid tumors, while very few enroll pediatric patients. We determined the types and frequency of FGFR alterations (FGFR1-4) in pediatric cancers to inform future clinical trial design. METHODS: Tumors with FGFR alterations were identified from two large cohorts of pediatric solid tumors subjected to targeted DNA sequencing: The Dana-Farber/Boston Children's Profile Study (n = 888) and the multi-institution GAIN/iCAT2 (Genomic Assessment Improves Novel Therapy) Study (n = 571). Data from the combined patient population of 1,395 cases (64 patients were enrolled in both studies) were reviewed and cases in which an FGFR alteration was identified by OncoPanel sequencing were further assessed. RESULTS: We identified 41 patients with tumors harboring an oncogenic FGFR alteration. Median age at diagnosis was 8 years (range, 6 months-26 years). Diagnoses included 11 rhabdomyosarcomas, nine low-grade gliomas, and 17 other tumor types. Alterations included gain-of-function sequence variants (n = 19), amplifications (n = 10), oncogenic fusions (FGFR3::TACC3 [n = 3], FGFR1::TACC1 [n = 1], FGFR1::EBF2 [n = 1], FGFR1::CLIP2 [n = 1], and FGFR2::CTNNA3 [n = 1]), pathogenic-leaning variants of uncertain significance (n = 4), and amplification in combination with a pathogenic-leaning variant of uncertain significance (n = 1). Two novel FGFR1 fusions in two different patients were identified in this cohort, one of whom showed a response to an FGFR inhibitor. CONCLUSION: In summary, activating FGFR alterations were found in approximately 3% (41/1,395) of pediatric solid tumors, identifying a population of children with cancer who may be eligible and good candidates for trials evaluating FGFR-targeted therapy. Importantly, the genomic and clinical data from this study can help inform drug development in accordance with the Research to Accelerate Cures and Equity for Children Act.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Secuencia de Bases , Neoplasias Encefálicas/genética , Carcinogénesis , Proteínas Asociadas a Microtúbulos , Oncogenes , Inhibidores de Proteínas Quinasas
12.
JAMA Oncol ; 8(8): 1160-1168, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35708671

RESUMEN

Importance: Although tumor mutation burden (TMB) has been explored as a potential biomarker of immunotherapy efficacy in solid tumors, there still is a lack of consensus about the optimal TMB threshold that best discriminates improved outcomes of immune checkpoint inhibitor therapy among patients with non-small cell lung cancer (NSCLC). Objectives: To determine the association between increasing TMB levels and immunotherapy efficacy across clinically relevant programmed death ligand-1 (PD-L1) levels in patients with NSCLC. Design, Setting, and Participants: This multicenter cohort study included patients with advanced NSCLC treated with immunotherapy who received programmed cell death-1 (PD-1) or PD-L1 inhibition in the Dana-Farber Cancer Institute (DFCI), Memorial Sloan Kettering Cancer Center (MSKCC), and in the Stand Up To Cancer (SU2C)/Mark Foundation data sets. Clinicopathological and genomic data were collected from patients between September 2013 and September 2020. Data analysis was performed from November 2021 to February 2022. Exposures: Treatment with PD-1/PD-L1 inhibition without chemotherapy. Main Outcomes and Measures: Association of TMB levels with objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). Results: In the entire cohort of 1552 patients with advanced NSCLC who received PD-1/PD-L1 blockade, the median (range) age was 66 (22-92) years, 830 (53.5%) were women, and 1347 (86.8%) had cancer with nonsquamous histologic profile. A regression tree modeling ORR as a function of TMB identified 2 TMB groupings in the discovery cohort (MSKCC), defined as low TMB (≤19.0 mutations per megabase) and high TMB (>19.0 mutations per megabase), which were associated with increasing improvements in ORR, PFS, and OS in the discovery cohort and in 2 independent cohorts (DFCI and SU2C/Mark Foundation). These TMB levels also were associated with significant improvements in outcomes of immunotherapy in each PD-L1 tumor proportion score subgroup of less than 1%, 1% to 49%, and 50% or higher. The ORR to PD-1/PD-L1 inhibition was as high as 57% in patients with high TMB and PD-L1 expression 50% or higher and as low as 8.7% in patients with low TMB and PD-L1 expression less than 1%. Multiplexed immunofluorescence and transcriptomic profiling revealed that high TMB levels were associated with increased CD8-positive, PD-L1-positive T-cell infiltration, increased PD-L1 expression on tumor and immune cells, and upregulation of innate and adaptive immune response signatures. Conclusions and Relevance: These findings suggest that increasing TMB levels are associated with immune cell infiltration and an inflammatory T-cell-mediated response, resulting in increased sensitivity to PD-1/PD-L1 blockade in NSCLC across PD-L1 expression subgroups.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adulto , Anciano , Anciano de 80 o más Años , Antígeno B7-H1 , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Cohortes , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación , Receptor de Muerte Celular Programada 1 , Adulto Joven
13.
J Thorac Oncol ; 17(3): 399-410, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34740862

RESUMEN

INTRODUCTION: STK11 and KEAP1 mutations (STK11 mutant [STK11MUT] and KEAP1MUT) are among the most often mutated genes in lung adenocarcinoma (LUAD). Although STK11MUT has been associated with resistance to programmed death-(ligand)1 (PD-[L]1) inhibition in KRASMUT LUAD, its impact on immunotherapy efficacy in KRAS wild-type (KRASWT) LUAD is currently unknown. Whether KEAP1MUT differentially affects outcomes to PD-(L)1 inhibition in KRASMUT and KRASWT LUAD is also unknown. METHODS: Clinicopathologic and genomic data were collected from September 2013 to September 2020 from patients with advanced LUAD at the Dana-Farber Cancer Institute/Massachusetts General Hospital cohort and the Memorial Sloan Kettering Cancer Center/MD Anderson Cancer Center cohort. Clinical outcomes to PD-(L)1 inhibition were analyzed according to KRAS, STK11, and KEAP1 mutation status in two independent cohorts. The Cancer Genome Atlas transcriptomic data were interrogated to identify differences in tumor gene expression and tumor immune cell subsets, respectively, according to KRAS/STK11 and KRAS/KEAP1 comutation status. RESULTS: In the combined cohort (Dana-Farber Cancer Institute/Massachusetts General Hospital + Memorial Sloan Kettering Cancer Center/MD Anderson Cancer Center) of 1261 patients (median age = 61 y [range: 22-92], 708 women [56.1%], 1065 smokers [84.4%]), KRAS mutations were detected in 536 cases (42.5%), and deleterious STK11 and KEAP1 mutations were found in 20.6% (260 of 1261) and 19.2% (231 of 1202) of assessable cases, respectively. In each independent cohort and in the combined cohort, STK11 and KEAP1 mutations were associated with significantly worse progression-free (STK11 hazard ratio [HR] = 2.04, p < 0.0001; KEAP1 HR = 2.05, p < 0.0001) and overall (STK11 HR = 2.09, p < 0.0001; KEAP1 HR = 2.24, p < 0.0001) survival to immunotherapy uniquely among KRASMUT but not KRASWT LUADs. Gene expression ontology and immune cell enrichment analyses revealed that the presence of STK11 or KEAP1 mutations results in distinct immunophenotypes in KRASMUT, but not in KRASWT, lung cancers. CONCLUSIONS: STK11 and KEAP1 mutations confer worse outcomes to immunotherapy among patients with KRASMUT but not among KRASWT LUAD. Tumors harboring concurrent KRAS/STK11 and KRAS/KEAP1 mutations display distinct immune profiles in terms of gene expression and immune cell infiltration.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Adenocarcinoma del Pulmón , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Proteína 1 Asociada A ECH Tipo Kelch/genética , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Mutación , Factor 2 Relacionado con NF-E2/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Adulto Joven
14.
Cancer Discov ; 12(2): 522-541, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34615655

RESUMEN

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive leukemia of plasmacytoid dendritic cells (pDC). BPDCN occurs at least three times more frequently in men than in women, but the reasons for this sex bias are unknown. Here, studying genomics of primary BPDCN and modeling disease-associated mutations, we link acquired alterations in RNA splicing to abnormal pDC development and inflammatory response through Toll-like receptors. Loss-of-function mutations in ZRSR2, an X chromosome gene encoding a splicing factor, are enriched in BPDCN, and nearly all mutations occur in males. ZRSR2 mutation impairs pDC activation and apoptosis after inflammatory stimuli, associated with intron retention and inability to upregulate the transcription factor IRF7. In vivo, BPDCN-associated mutations promote pDC expansion and signatures of decreased activation. These data support a model in which male-biased mutations in hematopoietic progenitors alter pDC function and confer protection from apoptosis, which may impair immunity and predispose to leukemic transformation. SIGNIFICANCE: Sex bias in cancer is well recognized, but the underlying mechanisms are incompletely defined. We connect X chromosome mutations in ZRSR2 to an extremely male-predominant leukemia. Aberrant RNA splicing induced by ZRSR2 mutation impairs dendritic cell inflammatory signaling, interferon production, and apoptosis, revealing a sex- and lineage-related tumor suppressor pathway.This article is highlighted in the In This Issue feature, p. 275.


Asunto(s)
Células Dendríticas/metabolismo , Trastornos Mieloproliferativos/genética , Ribonucleoproteínas/genética , Apoptosis , Femenino , Identidad de Género , Humanos , Masculino , Mutación
15.
Arch Pathol Lab Med ; 146(2): 227-232, 2022 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-34015814

RESUMEN

CONTEXT.­: The presence of allogeneic contamination impacts clinical reporting in cancer next-generation sequencing specimens. Although consensus guidelines recommend the identification of contaminating DNA as a part of quality control, implementation of contamination assessment methods in clinical molecular diagnostic laboratories has not been reported in the literature. OBJECTIVE.­: To develop and implement a method to assess allogeneic contamination in clinical cancer next-generation sequencing specimens. DESIGN.­: We describe a method to detect contamination based on the evaluation of single-nucleotide polymorphic sites from tumor-only specimens. We validate this method and apply it to a large cohort of cancer sequencing specimens. RESULTS.­: Identification of specimen contamination was validated via in silico and in vitro mixtures, and reference range and reproducibility were established in a panel of normal specimens. The algorithm accurately detects an episode of systemic contamination due to reagent impurity. We prospectively applied this algorithm across 7571 clinical cancer specimens from a targeted next-generation sequencing panel, in which 262 specimens (3.5%) were predicted to be affected by greater than 5% contamination. CONCLUSIONS.­: Allogeneic contamination can be inferred from intrinsic cancer next-generation sequencing data without paired normal sequencing. The adoption of this approach can be useful as a quality control measure for laboratories performing clinical next-generation sequencing.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Patología Molecular , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
16.
Cell ; 184(25): 6119-6137.e26, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34890551

RESUMEN

Prognostically relevant RNA expression states exist in pancreatic ductal adenocarcinoma (PDAC), but our understanding of their drivers, stability, and relationship to therapeutic response is limited. To examine these attributes systematically, we profiled metastatic biopsies and matched organoid models at single-cell resolution. In vivo, we identify a new intermediate PDAC transcriptional cell state and uncover distinct site- and state-specific tumor microenvironments (TMEs). Benchmarking models against this reference map, we reveal strong culture-specific biases in cancer cell transcriptional state representation driven by altered TME signals. We restore expression state heterogeneity by adding back in vivo-relevant factors and show plasticity in culture models. Further, we prove that non-genetic modulation of cell state can strongly influence drug responses, uncovering state-specific vulnerabilities. This work provides a broadly applicable framework for aligning cell states across in vivo and ex vivo settings, identifying drivers of transcriptional plasticity and manipulating cell state to target associated vulnerabilities.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Adulto , Anciano , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis de la Célula Individual
18.
Cancer Discov ; 11(10): 2446-2455, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34140290

RESUMEN

Several risk factors have been established for colorectal cancer, yet their direct mutagenic effects in patients' tumors remain to be elucidated. Here, we leveraged whole-exome sequencing data from 900 colorectal cancer cases that had occurred in three U.S.-wide prospective studies with extensive dietary and lifestyle information. We found an alkylating signature that was previously undescribed in colorectal cancer and then showed the existence of a similar mutational process in normal colonic crypts. This alkylating signature is associated with high intakes of processed and unprocessed red meat prior to diagnosis. In addition, this signature was more abundant in the distal colorectum, predicted to target cancer driver mutations KRAS p.G12D, KRAS p.G13D, and PIK3CA p.E545K, and associated with poor survival. Together, these results link for the first time a colorectal mutational signature to a component of diet and further implicate the role of red meat in colorectal cancer initiation and progression. SIGNIFICANCE: Colorectal cancer has several lifestyle risk factors, but the underlying mutations for most have not been observed directly in tumors. Analysis of 900 colorectal cancers with whole-exome sequencing and epidemiologic annotations revealed an alkylating mutational signature that was associated with red meat consumption and distal tumor location, as well as predicted to target KRAS p.G12D/p.G13D.This article is highlighted in the In This Issue feature, p. 2355.


Asunto(s)
Alquilantes , Neoplasias Colorrectales/genética , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Secuenciación del Exoma
19.
Cancer Discov ; 11(10): 2488-2505, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33926920

RESUMEN

We conducted next-generation DNA sequencing on 335 biliary tract cancers and characterized the genomic landscape by anatomic site within the biliary tree. In addition to frequent FGFR2 fusions among patients with intrahepatic cholangiocarcinoma (IHCC), we identified FGFR2 extracellular domain in-frame deletions (EID) in 5 of 178 (2.8%) patients with IHCC, including two patients with FGFR2 p.H167_N173del. Expression of this FGFR2 EID in NIH3T3 cells resulted in constitutive FGFR2 activation, oncogenic transformation, and sensitivity to FGFR inhibitors. Three patients with FGFR2 EIDs were treated with Debio 1347, an oral FGFR1/2/3 inhibitor, and all showed partial responses. One patient developed an acquired L618F FGFR2 kinase domain mutation at disease progression and experienced a further partial response for 17 months to an irreversible FGFR2 inhibitor, futibatinib. Together, these findings reveal FGFR2 EIDs as an alternative mechanism of FGFR2 activation in IHCC that predicts sensitivity to FGFR inhibitors in the clinic. SIGNIFICANCE: FGFR2 EIDs are transforming genomic alterations that occur predominantly in patients with IHCC. These FGFR2 EIDs are sensitive to FGFR inhibition in vitro, and patients with these alterations benefited from treatment with FGFR inhibitors in the clinic.This article is highlighted in the In This Issue feature, p. 2355.


Asunto(s)
Neoplasias de los Conductos Biliares/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Adulto Joven
20.
J Thorac Oncol ; 16(7): 1176-1187, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33845210

RESUMEN

INTRODUCTION: The SWItch/Sucrose Nonfermentable (SWI/SNF) chromatin remodeling complex acts as a regulatory component of transcription, and inactivating mutations (muts) within the complex are implicated in genomic instability, higher tumor mutational burden, and an aggressive cancer phenotype. Whether SMARCA4 and other SWI/SNF alterations are independent prognostic factors or associated with clinical outcomes to immune checkpoint inhibitors (ICIs) in NSCLC remains unclear. METHODS: We collected clinicopathologic and genomic data from patients with NSCLC who underwent targeted next-generation sequencing at the Dana-Farber Cancer Institute. Tumors were characterized on the basis of the presence or absence of muts across a set of six SWI/SNF genes (ARID1A, ARID1B, ARID2, PBRM1, SMARCA4, and SMARCB1). RESULTS: Of 2689 patients with NSCLC, 20.6% (N = 555) had SWI/SNF genomic alterations. Compared with SWI/SNF wild-type (wt) NSCLC, patients with SWI/SNF-mutant NSCLCs had a lower prevalence of concurrent targetable driver muts (33.2% versus 22.2%; p < 0.001), a higher tumor mutational burden (median 8.5 versus 12.2 muts/megabase; p < 0.001), and a shorter median overall survival (mOS) from the time of advanced disease diagnosis (25.0 versus 19.3 mo, p = 0.01); the detrimental effect in OS seemed to be largely driven by SMARCA4 muts (mOS: 25.0 for SMARCA4 wt versus 15.6 mo for SMARCA4 mutant; p < 0.001). Among 532 patients who received ICIs, 25.5% (N = 136) harbored SWI/SNF muts. From the start of immunotherapy, there was no difference in objective response rate (ORR = 19.9% versus 25.0%, p = 0.2), median progression-free survival (mPFS = 3.0 versus 3.0 mo, hazard ratio [HR] = 0.96 [95% confidence interval [CI] = 0.77-1.18], p = 0.7), or mOS (13.1 versus 9.5 mo, HR = 0.81 [95% CI: 0.64-1.02], p = 0.07) in SWI/SNF-wt versus SWI/SNF-mutant NSCLC, respectively. Nevertheless, among KRAS-mutant NSCLCs treated with ICIs (N = 176), a concurrent SWI/SNF mut (N = 39) conferred a numerically lower ORR (21.9% versus 12.8%, p = 0.2), a significantly shorter mPFS (4.1 versus 1.8 mo, HR = 0.57 [95% CI: 0.38-0.84], p = 0.005), and a significantly shorter mOS (15.5 versus 8.2 mo, HR = 0.56 [95% CI: 0.36-0.86], p = 0.008). The deleterious effect on immunotherapy outcomes in KRAS-mutant NSCLC was most pronounced in the SMARCA4-mutant subset (N = 17), with a lower ORR (22% versus 0%, p = 0.03), a significantly shorter mPFS (4.1 versus 1.4 mo, HR = 0.25 [95% CI: 0.14-0.42], p < 0.001), and a significantly shorter mOS (15.1 versus 3.0 mo, HR = 0.29 [95% CI: 0.17-0.50], p < 0.001) compared with SMARCA4-wt KRAS-mutant NSCLCs. CONCLUSIONS: Although there were no associations between SWI/SNF mut status and immunotherapy efficacy in the overall NSCLC cohort, the presence of a SMARCA4 alteration may confer a worse outcome to immunotherapy among KRAS-mutant NSCLCs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , ADN Helicasas/genética , Genómica , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Sacarosa , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...